Sulvme!

Gathering facts, Providing solutions

Welcome Guest, Tuesday 18th of June 2019
Site stat: 274 sulvers, Sulvers online: 0 Guests online: 8

Senior School Certificate Exams Neco Mathematics 2017 (Nov/Dec) Objectives View Theory


1:

Simplify 1frac{1}{2} + 2frac{2}{3} times frac{3}{4} - frac{1}{2}

A:

3frac{3}{4}

B:

3frac{1}{4}

C:

2frac{3}{4}

D:

1frac{3}{4}

E:

1frac{1}{4}

View Solution

2:

Evaluate frac{16.54}{0.0536 times 18.25} and leave your answer to three significant figures

A:

16.697

B:

16.820

C:

16.900

D:

16.909

E:

16.910

View Solution

3:

Simplify frac{8^{2} times 4^{0} times 8^{-3}}{7^{3} div 7^{6}}

A:

frac{343}{8}

B:

frac{343}{7}

C:

frac{343}{5}

D:

frac{243}{8}

E:

frac{243}{5}

View Solution

4:

Simplify frac{1}{3}log_{2}64

A:

2

B:

3

C:

4

D:

6

E:

12

View Solution

5:

If log_{10}2 = 0.3010 and log_{10}3 = 0.4771, find log_{10}54 correct to the nearest whole number

A:

6

B:

5

C:

3

D:

2

E:

1

View Solution

6:

Express 0.6721 times 0.0261 and express your answer in standard form

A:

df

B:

1754 times 10^{3}

C:

1.754 times 10^{-3}

D:

1.754 times 10^{-2}

E:

1.754 times 10^{-1}

View Solution

7:

The first term of a Geometric Progression is 6. If its common ratio is frac{2}{3}, find the 5th term

A:

frac{128}{243}

B:

frac{61}{81}

C:

frac{8}{3}

D:

frac{16}{9}

E:

frac{32}{27}

View Solution

8:

The first and last terms of an Arithmetic Progression are 6 and 153 respectively. If there are 50 terms in the sequence, find its common difference

A:

9

B:

7

C:

6

D:

4

E:

3

View Solution

9:

Given that 244x = 10224, what is the positive value of x?

A:

3

B:

4

C:

5

D:

6

E:

7

View Solution

10:

If 30145 = 21125 + y5, find the value of y

A:

10131

B:

5131

C:

5126

D:

902

E:

402

View Solution

11:

Simplify frac{2 + sqrt{5}}{2 sqrt{5} - 1}

A:

ds

B:

frac{1}{19}(12 - 4 sqrt{5})

C:

frac{1}{19}(12 + 4 sqrt{5})

D:

frac{1}{19}(12 - 5 sqrt{5})

E:

frac{1}{19}(12 + 5 sqrt{5})

View Solution

12:

A shareholder bought shares worth #100,000.00 on ordinary share at #2.00 each. If a dividend of 15 kobo per share is declared, how much dividend was received?

A:

#13,333.33

B:

#12,000.00

C:

#10,000.00

D:

#9,500.00

E:

#7,500.00

View Solution

13:

Find the future value of an ordinary annuity of #500.00 paid yearly for 4 years at 10% per annum.

A:

#700.00

B:

#732.05

C:

#923.50

D:

#1,232.05

E:

#2,320.50

View Solution

14:

Find the determinant of the matrix

K = begin{pmatrix} 3 & 0 & -1\ 1 & 2 & -3\ -2 & -1 & 1 end{pmatrix}

A:

-6

B:

-3

C:

0

D:

3

E:

6

View Solution

15:

Find the sum of the first 40 even positive integers.

A:

1,600

B:

1,640

C:

1,680

D:

3,200

E:

3,280

View Solution

16:

The first term of an Arithmetic Progression is -3. If the sixth term is 22, find the mean of the common difference and the first term

A:

1

B:

4

C:

5

D:

7

E:

8

View Solution

17:

Find the perimeter of a sector of a circle with radius 7cm which subtends an angle of 1800 at the centre of the circle

A:

36cm

B:

44cm

C:

58cm

D:

74cm

E:

108cm

View Solution

18:

Victoria went for a doctor's appointment on Monday. If her next appointment is 45 days after, which day of the week will it be?

A:

Friday

B:

Monday

C:

Saturday

D:

Thursday

E:

Wednesday

View Solution

19:

Solve the inequality

3x - 5 geq 20 - 2x

A:

x >4

B:

x geq 4

C:

x geq 5

D:

x < 5

E:

x leq 6

View Solution

20:

Expand (2a + b)2 - (b - 2a)2.

A:

-8ab

B:

4ab

C:

8ab

D:

-4ab

E:

16ab

View Solution

21:

If 4x2 - 12x + c is a perfect square, find the value of c.

A:

36

B:

9

C:

frac{9}{4}

D:

-frac{9}{4}

E:

-9

View Solution

22:

If (a - 3) is one of the factors of a2 + 14a - 51, find the other factor

A:

(a - 11)

B:

(a + 17)

C:

(a - 17)

D:

(a + 48)

E:

(a - 48)

View Solution

23:

Find the gradient of a straight line joining the points (-3, 0) and (0, 5).

A:

20

B:

10

C:

1frac{2}{3}

D:

-frac{3}{2}

E:

-frac{5}{3}

View Solution

24:

A quadratic equation whose roots are -frac{5}{4} and -frac{3}{4} is

A:

16x2 + 2x - 15 = 0

B:

16x2 - 2x + 15 = 0

C:

16x2 - 4x - 15 = 0

D:

16x2 - 8x + 15 = 0

E:

16x2 + 8x - 15 = 0

View Solution

25:

If P varies directly as sqrt{Q} and P = 6 when Q = 81, find the value of P when Q = frac{1}{4}

A:

3

B:

frac{1}{2}

C:

frac{1}{3}

D:

-frac{1}{2}

E:

-3

View Solution

26:

What is the maximum value of y?

A:

6.05

B:

4.05

C:

-4.05

D:

-5.05

E:

-10.05

View Solution

27:

What is the value of y when x = 0 ?

A:

9

B:

6

C:

5

D:

-9

E:

-15

View Solution

28:

Let p: I study hard

     q: I pass physics

     r:  I am happy

Translate p Rightarrow (q vee r) into statement

A:

I am unhappy but I pass physics

B:

I pass physics and I am happy

C:

If i do not study hard, then I pass physics and I am happy

D:

If I study hard, then I pass physics and I am happy

E:

If I study hard, then I pass physics or I am happy

View Solution

29:

Let p : I like bread with egg.

     q :  I like ginger in tea

Translate "I like ginger in tea but not bread with egg" into symbol.

A:

q vee p

B:

q wedge p

C:

dsff

D:

dsf

E:

sdf

View Solution

30:

Given that

(2x - 1) (x + 5) = 2x2 - mx - 5, find the value of m.

A:

11

B:

5

C:

-5

D:

-9

E:

-10

View Solution

31:

Find the midpoint of a line joining the points M(4, 0) and N(3, p)

A:

left ( frac{p}{2}, frac{7}{2} right )

B:

left ( frac{7}{2}, frac{p}{2} right )

C:

left ( frac{1}{2}, frac{p}{2} right )

D:

left ( frac{p}{2}, frac{1}{2} right )

E:

left ( 0, frac{7}{2} right )

View Solution

32:

Find the equation of a line with gradient 3, passing through (1, 4)

A:

3x - y = 1

B:

3x - y = -2

C:

y - 3x = 1

D:

y - 3x = -4

E:

y - 3x = 3

View Solution

33:

Solve the simultaneous equations:

y = frac{1}{3}x - 1, 3x - 2y = 4

A:

frac{12}{7}, frac{5}{7}

B:

frac{7}{6}, -frac{5}{7}

C:

frac{6}{7}, -frac{5}{7}

D:

-frac{5}{7}, frac{6}{7}

E:

frac{3}{5}, frac{2}{7}

View Solution

34:

Given that sin theta = frac{7}{9}, find the value of 9cos theta

A:

frac{7}{81}

B:

frac{4 sqrt{2}}{9}

C:

4 sqrt{2}

D:

9 sqrt{2}

E:

36 sqrt{2}

View Solution

35:

Find the value of x in the figure below

 

A:

2 sqrt{2}cm

B:

3sqrt{2}cm

C:

3 sqrt{3}cm

D:

sqrt{3}cm

E:

frac{sqrt{3}}{2}cm

View Solution

36:

In the figure below, Delta ABC is isosceles. Calculate angle BED

A:

1050

B:

1000

C:

950

D:

850

E:

750

View Solution

37:

In the figure above, if the area of the square is 162cm2, calculate the radius of the circle.

A:

12cm

B:

10cm

C:

9cm

D:

8cm

E:

7cm

View Solution

38:

Calculate the area of the shaded region in the figure below.

A:

16.73cm2

B:

27.75cm2

C:

48.05cm2

D:

93.20cm2

E:

110.00cm2

View Solution

39:

In the figure above, AOB is a diameter. Find the angle marked x

A:

600

B:

550

C:

500

D:

450

E:

300

View Solution

40:

In the figure below, AD is a chord of a circle centred at O. Find angle ACD

A:

900

B:

800

C:

700

D:

500

E:

400

View Solution

41:

In the figure below, ABCD is a cyclic quadrilateral and O is the centre of the circle. Find angle ACB

A:

200

B:

400

C:

600

D:

800

E:

1000

View Solution

42:

Calculate nearest to the nearest degree, the parallel of latitude in the southern hemisphere along which a journey of 320km makes a change of 210 in longitude.

(Take pi = frac{22}{7} and R = 6400km)

A:

80

B:

160

C:

660

D:

820

E:

920

View Solution

43:

The positions of two cities M and N are (140N, 300E) and (720N, 300E) respectively. How far is city N from M ?

(Take pi = frac{22}{7} and R = 6400km)

A:

9610.16km

B:

8610.16km

C:

6481.27km

D:

6400.27km

E:

5364.18km

View Solution

44:

Calculate the volume of a sphere with radius 6cm (Take pi = 3.14)

A:

2716.96cm3

B:

904.32cm3

C:

902.88cm3

D:

452.16cm3

E:

216.00cm3

View Solution

45:

What is the value of x if the gradient of the line joining (-2, x) and (x, 3) is 1/4

A:

-3

B:

-2

C:

1

D:

2

E:

3

View Solution

46:

An arc of a circle of radius 6cm subtends an angle of 450 at the centre of the circle. Find the length of the arc in terms of pi

A:

7 pi cm

B:

2 pi cm

C:

frac{3}{2} pi cm

D:

frac{pi}{2} cm

E:

frac{pi}{6} cm

View Solution

47:

Find the distance between the points C(3,3) and D(-1,5)

A:

4 sqrt{17}

B:

3 sqrt{17}

C:

4 sqrt{5}

D:

2 sqrt{5}

E:

sqrt{3}

View Solution

48:

The bearing of a town Q from a town P is 0450. Find the bearing of P from Q

A:

0450

B:

0900

C:

1350

D:

1800

E:

2250

View Solution

49:

Find the mean of 4frac{1}{2},, 7, 6.5, 8, 5frac{1}{2}, 3.25, 5frac{1}{2}, 1frac{1}{4} and 3frac{1}{2}

A:

sdfsdf

B:

sdfd

C:

5

D:

dsfds

E:

9

View Solution

50:

Find the mode of the data below.

A:

6.7

B:

6.3

C:

5.8

D:

5.2

E:

4.4

View Solution

51:

A farmland of 160 acres was used in planting various fruits as shown below

Use the information above to answer questions 51 to 53

Find the angle subtended by the sector for pineapples

A:

660

B:

630

C:

530

D:

430

E:

330

View Solution

52:

What is the percentage of farmland used for planting oranges?

A:

40%

B:

35%

C:

30%

D:

25%

E:

20%

View Solution

53:

How many acres of land is used in planting guava?

A:

14

B:

16

C:

18

D:

24

E:

34

View Solution

54:

Find the mean of the data below.

A:

20.5

B:

21.0

C:

21.5

D:

22.0

E:

22.5

View Solution

55:

The probabilities of two independent events P and Q occurring are frac{3}{8} and frac{2}{5} respectively. Find the probability that none of the events will occur.

A:

frac{3}{20}

B:

frac{3}{8}

C:

frac{2}{5}

D:

frac{3}{5}

E:

frac{5}{8}

View Solution

56:

The table below shows the age distribution of students in a college. Use the information to answer questions 56 and 57

Find the probability that a student selected at random is at least 17 years old.

A:

frac{1}{10}

B:

frac{1}{5}

C:

frac{3}{10}

D:

frac{2}{5}

E:

frac{3}{5}

View Solution

57:

Find the probability that a student selected at random is either 17 or 18 years old.

A:

frac{3}{50}

B:

frac{1}{5}

C:

frac{3}{10}

D:

frac{1}{2}

E:

frac{7}{10}

View Solution

58:

Evaluate int(9x^{2} - 4x + 2)dx

A:

x3 - x2 + x + c

B:

x3 + x2 + x + c

C:

3x3 - 2x2 + 2x + c

D:

3x3 + 2x2 + 2x + c

E:

18x3 - 4x2 + 2x + c

View Solution

59:

Find the derivative of ***

A:

frac{x - 2}{(x + 1)^{2}}

B:

frac{2 - x}{(x + 1)^{2}}

C:

frac{-3}{(x + 1)^{2}}

D:

frac{3}{(x + 1)^{2}}

E:

frac{3}{(2x - 1)^{2}}

View Solution

60:

Evaluate int frac{dx}{3x + 2}

A:

In(4x + 2) + c

B:

frac{1}{6}In(3x + 2) + c

C:

frac{1}{4}In(3x + 2) + c

D:

frac{1}{3}In(3x + 2) + c

E:

frac{1}{2}In(3x + 2) + c

View Solution